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๏A consensus on the relevance of TMDs is growing
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TMDs in black survive transverse‐momentum integra=on
TMDs in red are T‐odd

For effects related to twist‐3 TMDs, see talks by
M. Burkardt, F. Giordano, M. Aghasyan, K. Tanaka, Y. Koike... 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Unpolarized 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Nucleon tomography in momentum space
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Analyses of Drell‐Yan data
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s
p ’ 23:8 GeV and fixed rapidity y !

0:21, as a function of the transverse momentum of the lepton
pair qT and averaged over different invariant mass bins (see the
legend). The parametrization MRST01 [25] for the unpolarized
parton distributions is used, with 1=! ! 0:8 GeV=c. Curves
are rescaled by a fixed K-factor, K ! 1:8. Data are from [27].
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pair qT and averaged over different invariant mass bins (see the
legend). The parametrization MRST01 [25] for the unpolarized
parton distributions is used, with 1=! ! 0:9 GeV=c. Curves
are rescaled by a fixed K-factor, K ! 1:6. Data are from [27].
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Analyses of Drell‐Yan 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of each fit, Figs. 1–5 compare theory calculations for the

DWS-G, LY-G, and BLNY parametrizations to each data set.

We emphasize again that the new LY-G parametrization pre-

sented in Table III was obtained by applying the conven-

tional global fitting procedure to the enlarged data set listed

in Tables I and II. In contrast, the original LY fit in Ref. !10"
was obtained by first fitting the g2 parameter using the CDF-

FIG. 2. Comparison to the E605 data for the process p!Cu

→#!#"!X at !S#38.8 GeV. The data are the published experi-
mental values. The curves are the results of the fits multiplied by the

best-fit values of 1/Nf it given in Table III.

FIG. 3. Comparison to the E288 data for the process p!Cu

→#!#"!X at !S#27.4 GeV. The data are the published experi-
mental values. The curves are the results of the fits and are multi-

plied by the best-fit values of 1/Nf it given in Table III.

FIG. 4. Comparison to the DO” -Z run-1 data. The data are the
published experimental values. The curves are the results of the fits

and are multiplied by the best-fit values of 1/Nf it given in Table III.

FIG. 5. Comparison to the CDF-Z run-1 data. The data are the

published experimental values. The curves are the results of the fits

and are multiplied by the best-fit value of 1/Nf it given in Table III.
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legend). The parametrization MRST01 [25] for the unpolarized
parton distributions is used, with 1=! ! 0:8 GeV=c. Curves
are rescaled by a fixed K-factor, K ! 1:8. Data are from [27].
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FIG. 4: The P 2
t dependence of differential cross-sections per nucleus for π± production on hydrogen

(H) and deuterium (D) targets at 〈z〉=0.55 and 〈x〉=0.32. The solid lines show the result of the

seven-parameter fit described in the text. The error bars are statistical only. Systematic errors

are typically 4% (relative, see text for details). The average value of cos(φ) varies with P 2
t (see

Table 1.

(see Fig. 1). We assume further that sea quarks are negligible (typical global fits show less

than 10% contributions at x = 0.3). To make the problem tractable, we take only the

leading order terms in (kt/Q), which was shown to be a reasonable approximation for small

to moderate Pt in Ref. [6]. The simple model can then be written as:

σπ+
p = C[4c1(Pt)e−b+u P 2

t + (d/u)(D−/D+)c2(Pt)e−b−
d

P 2
t ]
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t ]

σπ−
n = C[4(d/u)(D−/D+)c2(Pt)e−b−

d
P 2

t + c1(Pt)e−b+u P 2
t ]

(4)

where C is an arbitrary normalization factor, and the inverse of the total widths for each
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Orbital angular momentum in atoms

Vos, McCarthy, Am. J. Phys. 65 (97), 544

this context it is interesting to note an early discussion by
Coulson,12 who emphasized the potential of momentum in-
formation for studying chemical bonding. At that time par-
tially momentum-integrated and energy-summed information
on molecular momentum densities could be obtained from
Compton scattering.2,3

The prototype for the discussion of the chemical bond is
the hydrogen molecule. The distance between the nuclei in a
hydrogen molecule is 1.4 a.u. !0.74 Å". This is considerably
smaller than the spatial extension of two atomic hydrogen 1s
orbitals !see Fig. 2", each of which has an rms charge radius
of 1.73 a.u. The orbitals of two undisturbed hydrogen atoms
at the molecular distance would therefore overlap.
The chemical bond is described by molecular orbitals that

are SCF solutions of the molecular Schrödinger equation.
The most stable solution is one that minimizes the total en-
ergy of the system. There are different types of molecular
orbitals, each with a different symmetry property. In a sim-
plified description we understand them in terms of linear
combinations of atomic orbitals. For two identical atoms,
indistinguishability of the electrons limits the possible com-
binations of atomic orbitals to two, one symmetric and one

antisymmetric. The antisymmetric combination has a nodal
plane equidistant from the nuclei. Nonidentical atoms result
in analogous molecular orbitals, but the nodal surface in the
analogue of the antisymmetric orbital is deformed and dis-
placed. The electron density is the squared magnitude of the
molecular orbital.
The key to understanding the energies of different types of

molecular orbitals in the atomic-orbital picture, and therefore
their bonding properties, is the density of negative charge
resulting from the interference of the overlapping atomic or-
bitals. This is called the interference density.13 The interfer-
ence of s orbitals is constructive in the symmetric case, de-
structive in the antisymmetric case.
We first compare the symmetric combination of two 1s

orbitals with two bare 1s orbitals at the molecular distance.
Constructive interference results in charge density being re-
distributed from the region near the nuclei to the overlap
region between the nuclei. The density changes are of two
kinds.
First, the volume occupied by the electrons becomes larger

and the density smoother. This results in a significant lower-
ing of the kinetic energy, since lower absolute momenta re-

Fig. 2. Three-dimensional plots of the probability density !#(x ,y ,0) !2 in coordinate space and the probability density !$(px ,py,0) !2 in momentum space are
shown for the 1s , 2s , and 2py orbitals of the hydrogen atom. Note that in momentum and coordinate space the orbitals have the same symmetry. Also note
that the more extended the orbital is in coordinate space, the more confined in momentum space. The node for the 2s orbital results in a density minimum
which is visible as a circle centered at the origin in both the coordinate- and momentum-space pictures.
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• In 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• In atomic physics, 
wavefunc=ons 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momentum have 
dis=nct 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• The most direct visualiza=on 
of these shapes is provided 
by scabering experiments 
and is in momentum space
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of each fit, Figs. 1–5 compare theory calculations for the

DWS-G, LY-G, and BLNY parametrizations to each data set.

We emphasize again that the new LY-G parametrization pre-

sented in Table III was obtained by applying the conven-

tional global fitting procedure to the enlarged data set listed

in Tables I and II. In contrast, the original LY fit in Ref. !10"
was obtained by first fitting the g2 parameter using the CDF-

FIG. 2. Comparison to the E605 data for the process p!Cu

→#!#"!X at !S#38.8 GeV. The data are the published experi-
mental values. The curves are the results of the fits multiplied by the

best-fit values of 1/Nf it given in Table III.

FIG. 3. Comparison to the E288 data for the process p!Cu

→#!#"!X at !S#27.4 GeV. The data are the published experi-
mental values. The curves are the results of the fits and are multi-

plied by the best-fit values of 1/Nf it given in Table III.

FIG. 4. Comparison to the DO” -Z run-1 data. The data are the
published experimental values. The curves are the results of the fits

and are multiplied by the best-fit values of 1/Nf it given in Table III.

FIG. 5. Comparison to the CDF-Z run-1 data. The data are the

published experimental values. The curves are the results of the fits

and are multiplied by the best-fit value of 1/Nf it given in Table III.

FERMILAB TEVATRON RUN-1 Z BOSON DATA AND . . . PHYSICAL REVIEW D 67, 073016 $2003%

073016-5

Is it already seen in data?
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At low pT |ψp−wave|2 ∼ p2
T
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•All 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and 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momentum are model‐dependent
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by B. 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func=on 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0
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1T (x) = −3
2
MCF αS κq

Burkardt, Hwang, PRD69 (04)
Lu, Schmidt, PRD75 (07)
A.B., F. ConO, M. Radici, arXiv:0807.0323
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FIG. 7: The Sivers distribution functions for u and d flavours as determined by our present fit (solid lines) are compared with
the Sivers distribution functions for u and d flavours as had been determined by our previous fit [2] on SIDIS data (dashed
lines), where π0 and kaon productions were not considered and only valence quark contributions were taken into account. This
plot clearly shows that the Sivers functions previously found are consistent, within the uncertainty bands, with the Sivers
functions presently obtained.

measurements. In particular, a combined analysis of HERMES, COMPASS and JLab SIDIS data will allow a much
better determination of the β parameters, which control the large x behavior of the Sivers distribution functions. In
addition, the combined analysis of proton and neutron target events will help flavour disentangling and a more precise
determination of u and d quark contributions. Our predictions for the JLab SSAs, for pion and kaon production off
proton, neutron and deuteron targets, at 6 and 12 GeV, are presented in Figs. 9–14.

The adopted experimental cuts for JLab operating on a proton or a deuteron target at 6 GeV are, in terms of the
usual SIDIS variables, the following:

0.4 ≤ zh ≤ 0.7 0.02 ≤ PT ≤ 1 GeV/c

0.1 ≤ x
B
≤ 0.6 0.4 ≤ y ≤ 0.85

Q2 ≥ 1 (GeV/c)2 W 2 ≥ 4 GeV2

1 ≤ Eh ≤ 4 GeV ,

(26)

whereas for a beam energy of 12 GeV they are:

0.3 ≤ zh ≤ 0.8 0.05 ≤ PT ≤ 1.5 GeV/c

0.05 ≤ x
B
≤ 0.7 0.25 ≤ y ≤ 0.85

1 ≤ Q2 ≤ 8 (GeV/c)2 W 2 ≥ 4 GeV2

1.5 ≤ Eh ≤ 3.5 GeV .

(27)

Anselmino et al., 0805.2677, 
Arnold et al. , 0805.2137
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Lu, 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FIG. 7: The Sivers distribution functions for u and d flavours as determined by our present fit (solid lines) are compared with
the Sivers distribution functions for u and d flavours as had been determined by our previous fit [2] on SIDIS data (dashed
lines), where π0 and kaon productions were not considered and only valence quark contributions were taken into account. This
plot clearly shows that the Sivers functions previously found are consistent, within the uncertainty bands, with the Sivers
functions presently obtained.

measurements. In particular, a combined analysis of HERMES, COMPASS and JLab SIDIS data will allow a much
better determination of the β parameters, which control the large x behavior of the Sivers distribution functions. In
addition, the combined analysis of proton and neutron target events will help flavour disentangling and a more precise
determination of u and d quark contributions. Our predictions for the JLab SSAs, for pion and kaon production off
proton, neutron and deuteron targets, at 6 and 12 GeV, are presented in Figs. 9–14.

The adopted experimental cuts for JLab operating on a proton or a deuteron target at 6 GeV are, in terms of the
usual SIDIS variables, the following:

0.4 ≤ zh ≤ 0.7 0.02 ≤ PT ≤ 1 GeV/c

0.1 ≤ x
B
≤ 0.6 0.4 ≤ y ≤ 0.85

Q2 ≥ 1 (GeV/c)2 W 2 ≥ 4 GeV2

1 ≤ Eh ≤ 4 GeV ,

(26)

whereas for a beam energy of 12 GeV they are:

0.3 ≤ zh ≤ 0.8 0.05 ≤ PT ≤ 1.5 GeV/c

0.05 ≤ x
B
≤ 0.7 0.25 ≤ y ≤ 0.85

1 ≤ Q2 ≤ 8 (GeV/c)2 W 2 ≥ 4 GeV2

1.5 ≤ Eh ≤ 3.5 GeV .

(27)

Anselmino et al., 0805.2677, 
Arnold et al. , 0805.2137

Model statement (1− x)f⊥q
1T (x) = −3

2
MCF αS Eq(x, 0, 0)

∫ 1

0
dx(1− x)f⊥q

1T (x) = −3
2
MCF αS κq

Burkardt, Hwang, PRD69 (04)
Lu, Schmidt, PRD75 (07)
A.B., F. ConO, M. Radici, arXiv:0807.0323
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see talk by S. MeissnerThe rela=on is not general
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FIG. 6: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data (see text for details). On the left panel, the first moment x ∆Nf (1)(x), Eq. (17), is shown as a function of x
for each flavour, as indicated. Similarly, on the right panel, the Sivers distribution x∆Nf(x, k⊥) is shown as a function of k⊥

at a fixed value of x for each flavour, as indicated. The highest and lowest dashed lines show the positivity limits |∆Nf | = 2f .

IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS

Anselmino et al., 0805.2677, 
see talk by  A. Prokudin

f⊥q
1T (x) = −f(x) Eq(x, 0, 0)

f⊥g
1T (x) = −f ′(x) Eg(x, 0, 0)
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FIG. 6: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data (see text for details). On the left panel, the first moment x ∆Nf (1)(x), Eq. (17), is shown as a function of x
for each flavour, as indicated. Similarly, on the right panel, the Sivers distribution x∆Nf(x, k⊥) is shown as a function of k⊥

at a fixed value of x for each flavour, as indicated. The highest and lowest dashed lines show the positivity limits |∆Nf | = 2f .

IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS

Anselmino et al., 0805.2677, 
see talk by  A. Prokudin

•Can the Sivers measurements provide an 
effec=ve way to do a flavor decomposi=on of 
the anomalous magne=c moment?

f⊥q
1T (x) = −f(x) Eq(x, 0, 0)

f⊥g
1T (x) = −f ′(x) Eg(x, 0, 0)
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IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS

Anselmino et al., 0805.2677, 
see talk by  A. Prokudin

•Can the Sivers measurements provide an 
effec=ve way to do a flavor decomposi=on of 
the anomalous magne=c moment?

•Can it become one of the most important 
sources of informa=on also on gluon angular 
momentum?

f⊥q
1T (x) = −f(x) Eq(x, 0, 0)

f⊥g
1T (x) = −f ′(x) Eg(x, 0, 0)
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∫
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ξ+=0
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ξT

SIDIS

Drell‐Yan

pp to hadrons

U[+]

U[+]

U[−]

U[!]U[+]

+ several others
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can be 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